Full Content is available to subscribers

Subscribe/Learn More  >

Mechanism of Force Generation in Kinesin Motility

[+] Author Affiliations
Wonmuk Hwang

Texas A&M University, College Station, TX

Matthew J. Lang

Massachusetts Institute of Technology, Cambridge, MA

Paper No. SBC2007-175543, pp. 777-778; 2 pages
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME


Conventional kinesin is a dimeric motor protein that uses adenosine triphosphate (ATP) to walk processively along the microtubule. Although its nucleotide dependent conformational switching and binding of the neck linker (NL) on the motor head are known to be key events in kinesin motility, the basic mechanism by which it amplifies a small conformational change upon ATP binding to generate the force of the walking stroke has not been known. We combined structural analysis with a set of molecular dynamics simulations to identify the 9-residue long N-terminal region, which we named the ‘cover strand’ (CS), as an additional element essential for kinesin’s power stroke. It operates by differentially forming a β-sheet with NL when ATP binds, whereby the ‘cover-neck bundle’ (CNB) has an inherent conformational bias that drives NL into its binding pocket on the motor head. After the initial stroke, the later half of NL, starting with the ‘asparagine latch’ in the middle, forms specific bonds with the motor head to ensure tight binding. We constructed the force map generated by CNB, which showed a forward bias in agreement with single molecule motility measurements. Our result is consistent with other experimental observations, including the estimated stall force and the transverse anisotropy. The novel mechanism of force generation by the dynamic folding of CNB appears to hold in various kinesin families, and elucidates the economy in the design principle of the smallest known processive motor.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In