Full Content is available to subscribers

Subscribe/Learn More  >

Quantification of Three-Dimensional Motion of the Renal Arteries Using Image-Based Modeling Techniques

[+] Author Affiliations
Ga Young Suh, Gilwoo Choi, Mary Draney Blomme, Charles A. Taylor

Stanford University, Stanford, CA

Paper No. SBC2007-176291, pp. 715-716; 2 pages
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME


Stents implanted to treat renal artery stenosis are vulnerable to stent fracture and thrombosis [1–3]. We hypothesize that the motion of the renal arteries during respiration is a possible cause of stent fracture or in-stent restenosis. However, the respiratory motion of the renal arteries and the kidneys is poorly understood. Using magnetic resonance imaging data we previously quantified the two-dimensional deformation of the renal arteries and demonstrated that respiration-induced kidney motion results in vessel bending near the ostia [4]. In this study we quantified the complex three-dimensional motion of the renal arteries and kidneys over the respiratory cycle using magnetic resonance angiography data and imaged-based modeling methods. We provide quantitative information on anatomic changes to the renal arteries that may provide data to design improved pre-clinical, benchtop tests for renal stents.

Copyright © 2007 by ASME
Topics: Modeling , Kidney



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In