Full Content is available to subscribers

Subscribe/Learn More  >

Identification of a Mathematical Model for the Prediction of Platelet Damage Accumulation in Artificial Organs: A Preliminary Study

[+] Author Affiliations
Matteo Nobili, Alberto Redaelli

Politecnico di Milano, Milano, Italy

Jawaad Sheriff, Danny Bluestein

Stony Brook University, Stony Brook, NY

Umberto Morbiducci

Università Politecnica delle Marche, Ancona, Italy

Paper No. SBC2007-176165, pp. 705-706; 2 pages
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME


Platelets are the pre-eminent cell involved in hemostasis and thrombosis. In recent years it has been demonstrated that flow-induced platelet activation is a major cause for the relatively high incidence of thromboembolic complications in mechanical heart valves (MHVs) [1,2].The platelet activation state (PAS) assay has proved to be a reliable technique for the experimental measurement of procoagulant activity [3]. A Predictive numerical model for platelets damage accumulation could provide critical information for thrombogenicity optimization of implantable prosthetic devices. This would lead to improving the safety and efficacy of implantable devices. Reliable models able to predict this phenomenon are still lacking. The aim of this work is an attempt to bridge this gap. A model for describing the activation of formed elements in blood requires establishing a correlation between mechanical loading, exposure time and the phenomenological response of these elements to it. A physically consistent phenomenological model is used [4] and genetic algorithms (GAs) [5], have been successfully applied to the tuning of the model parameters by correlating its predictions to PAS measurements conducted in a Hemodynamic Shearing Device (HSD) by exposing platelets to prescribed shear stress loading waveforms.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In