Full Content is available to subscribers

Subscribe/Learn More  >

Fluid Mechanical Analysis at Closure of the On-X Mechanical Heart Valve

[+] Author Affiliations
Christopher M. Haggerty

The Pennsylvania State University, University Park, PA

Luke H. Herbertson, Steven Deutsch, Keefe B. Manning

Pennsylvania State University, University Park, PA

Paper No. SBC2007-175949, pp. 687-688; 2 pages
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME


Three-dimensional laser Doppler velocimetry (LDV) was used to characterize the flow created by the On-X bileaflet mechanical heart valve (MHV) manufactured by Medical Carbon Research Institute (MCRI), Inc. (Austin, TX). The valve was mounted into a pneumatically driven single-shot chamber in the mitral position such that only the closure dynamics were simulated. Measurements taken 2 mm proximal to the valve housing showed a peak velocity of 1.8 m/s and maximum Reynolds Shear Stresses (RSS) of 17,500 dynes/cm2, which were found along the centerline of the valve in the hinge region 2 ms after valve closure. The large velocity and RSS gradients denote the presence of complex flow structures. These results provide an initial basis for understanding the impact of valve geometry on hemolysis and thrombosis associated with the On-X MHV.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In