Full Content is available to subscribers

Subscribe/Learn More  >

Knee Kinematics During an In Vitro Simulated Deep Flexion Squat

[+] Author Affiliations
Chadd W. Clary, Amit M. Mane, Amber N. Reeve, Kevin A. Dodd, Lorin P. Maletsky

University of Kansas, Lawrence, KS

Paper No. SBC2007-176683, pp. 663-664; 2 pages
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME


Understanding the behavior of the natural knee in deep flexion can offer insight into the necessary design characteristics of a total knee implant. Andriacchi et al. [1] measured the in vivo characteristics of knee motion down to ∼150° knee flexion during a weight bearing squat. Likewise, Li et al. [2] investigated deep knee flexion in vitro using robotic technology during passive knee flexion. Both of these studies offer insight into the behavior of the knee in deep knee flexion; however, they have some limitations with regards to assessing physiological activities in a controlled manner. The purpose of this study was to measure the kinematics of the knee during a simulated in vitro deep knee squat so that in the future a dynamic, load-bearing, simulated deep knee squat could be used as a tool in the design of total knee prostheses.

Copyright © 2007 by ASME
Topics: Kinematics , Knee



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In