Full Content is available to subscribers

Subscribe/Learn More  >

3D Finite Strains in Bovine Annulus Fibrosus Tissue

[+] Author Affiliations
J. M. Huyghe, C. J. M. Jongeneelen, F. Kraaijeveld, Y. Schroeder

Eindhoven University of Technology, Eindhoven, The Netherlands

Paper No. SBC2007-176508, pp. 645-646; 2 pages
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME


Intervertebral disc tissue consists of a fluid-filled extra-cellular matrix, in which living cells are sparsely dispersed. The mechanical function is highly dependent on the composition of the extra-cellular matrix, which primary consists of collagen fibrils and negatively charged proteoglycans. Due to the fixed charges of the proteoglycans (PG’s), the cation concentration inside the tissue is higher than physiological. This excess of ion particles leads to an osmotic pressure difference, which causes swelling of the tissue [1]. Because the intervertebral disc is gripped between two vertebrae, the swelling is constrained in vivo, resulting in a intradiscal pressure of 0.1 to 0.2 MPa in supine position. It has been shown that the osmotic pressure inside cartilaginous tissues is much higher than would be expected based on its FCD [2]. This is because part of the water in the tissue is absorbed by the collagen fibers. The proteoglycan molecules, because of their large size, are excluded from this intra-fibrillar space. This means that their effective concentrations are much higher in the extra-fibrillar space than if they were distributed uniformly throughout the entire matrix. Hence, the effective fixed charge density is higher than if computed from total tissue water content. A recent study demonstrates that intrafibrillar water increases osmolarity within the annulus fibrosus substantially [3]. On the other hand, Wognum et al. [4] showed by means of a physical and a numerical model of the disc that high osmolarity within the disc has a protective effect against crack propagation within the disc. Hence, the decrease in osmolarity associated with degeneration may be an explanation of (1) the growing number of cracks observed in the degenerating disc as well as (2) the poor correlation between external loading and crack propagation [5]. The purpose of the present study is to test the hypothesis of Wognum et al. [4] through direct observation of the deformation of annulus fibrosus tissue around discontinuities within its collagen network.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In