0

Full Content is available to subscribers

Subscribe/Learn More  >

Ameliorating Glycosaminoglycan (GAG) Loss and Cell Death in Articular Cartilage Following Single-Impact Loading

[+] Author Affiliations
Roman M. Natoli

Rice University, Houston, TXBaylor College of Medicine, Houston, TX

Kyriacos A. Athanasiou

Baylor College of Medicine, Houston, TX

Paper No. SBC2007-176542, pp. 607-608; 2 pages
doi:10.1115/SBC2007-176542
From:
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME

abstract

Impact loading of articular cartilage leads to post-traumatic osteoarthritis (OA) through its effects on the cells and extracellular matrix (ECM) of the tissue. Studies have shown the level of impact or injurious compression correlates with increased cell death, degradation of the ECM, and detrimental changes in biomechanical properties [1]. Recently, several bioactive agents, such as P188 and IGF-I, have shown promising results by reducing cell death following injurious compression of cartilage explants [2, 3].

Copyright © 2007 by ASME
Topics: Cartilage

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In