0

Full Content is available to subscribers

Subscribe/Learn More  >

Development and Response of Materially-Nonlinear, Multi-Layer Synthetic Models of the Human Vocal Folds

[+] Author Affiliations
James S. Drechsel, Jacob B. Munger, Allyson A. Pulsipher, Scott L. Thomson

Brigham Young University, Provo, UT

Paper No. SBC2007-176564, pp. 523-524; 2 pages
doi:10.1115/SBC2007-176564
From:
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME

abstract

The human vocal folds are responsible for sound production during normal speech, and a study of their flow-induced vibrations can lead to improved prevention and treatment of voice disorders. However, studying the vocal folds in vivo or using excised larynges has several disadvantages. Therefore, alternatives exist using either synthetic (physical) and/or computational vocal fold models. In order to be physiologically relevant, the behavior and properties of these models must reasonably match those of the human vocal folds.

Copyright © 2007 by ASME
Topics: Vocal cords

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In