Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Discrete Finite Element Cell Model

[+] Author Affiliations
Karen M. Coghlan, Patrick McGarry, Peter E. McHugh

National University of Ireland, Galway, Galway, Ireland

Mohammad R. K. Mofrad

University of California, Berkeley, Berkeley, CA

Paper No. SBC2007-176734, pp. 437-438; 2 pages
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME


Computational models have proven useful in the study of cell mechanics and mechanotransduction. While most finite element (FE) models of cells are commonly described in terms of the laws of continuum mechanics, a model that can accurately represent the microstructure of the filamentous network of the cytoskeleton would be required to relate mechanics to biology at the microscale level. An alternative approach to a continuum is presented here, whereby the discrete nature of the cytoskeleton of the cell is emphasized and the known structural properties of the cytoskeleton of the cell are utilized.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In