Full Content is available to subscribers

Subscribe/Learn More  >

Effect of a Degenerated C5-C6 Disc on the Biomechanics of Adjacent Levels: A Poroelastic Finite Element Investigation

[+] Author Affiliations
Mozammil Hussain, Gunnar B. J. Andersson, Howard S. An

Rush University Medical Center, Chicago, IL

Raghu N. Natarajan

Rush University Medical Center, Chicago, ILUniversity of Illinois at Chicago, Chicago, IL

Paper No. SBC2007-176621, pp. 411-412; 2 pages
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME


Degenerative changes in the cervical spine due to aging are very common causes of neck pain in general population. Although many investigators have quantified the gross morphological changes in the disc with progressive degeneration, the biomechanical changes due to degenerative pathologies of the disc and its effect on the adjacent levels are not well understood. Despite many in vivo and in vitro techniques used to study such complex phenomena, the finite element (FE) method is still a powerful tool to investigate the internal mechanics and complex clinical situations under various physiological loadings particularly when large numbers of parameters are involved. The objective of the present study was to develop and validate a poroelastic FE model of a healthy C3-T1 segment of the cervical spine under physiologic moment loads. The model included the regional effect of change in the fixed charged density of proteoglycan concentration and change in the permeability and porosity due to change in the axial strain of disc tissues. The model was further modified to include various degrees of disc degeneration at the C5-C6 level. Outcomes of this study provided a better understanding on the progression of degeneration along the cervical spine by investigating the biomechanical response of the adjacent segments with an intermediate degenerated C5-C6 level.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In