0

Full Content is available to subscribers

Subscribe/Learn More  >

Computationally Efficient, Explicit Finite Element Model for Evaluation of Patellofemoral Mechanics

[+] Author Affiliations
Mark A. Baldwin, Paul J. Rullkoetter

University of Denver, Denver, CO

Paper No. SBC2007-176480, pp. 389-390; 2 pages
doi:10.1115/SBC2007-176480
From:
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME

abstract

Patient-specific finite element (FE) models can provide clinically relevant information about contact mechanics and kinematics that may be difficult or infeasible to obtain otherwise, and have potential to guide pre-operative planning. However, substantial uncertainty in model variables exists in patient-specific modeling, and suggests a probabilistic approach. Although efficient probabilistic methodology has been recently developed, multiple analyses are still required, and computational time for a fully deformable FE model throughout a flexion cycle has typically made this impractical. Therefore, the goal of the present study was to develop an explicit FE model of the patellofemoral joint with deformable cartilage and deformable, wrapping extensor tendons, and to compare kinematic and contact mechanics results with a model modified for computational efficiency. The efficient model incorporated rigid femoral and patellar cartilage representation with an optimized contact pressure–surface overclosure relationship, and composite-fiber tendons.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In