Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Stress Fiber Organization in Cyclically Stretched Cells

[+] Author Affiliations
Zhensong Wei, Robert M. McMeeking, Anthony G. Evans

University of California, Santa Barbara, CA

Vikram S. Deshpande

University of Cambridge, Cambridge, UK

Paper No. SBC2007-176453, pp. 273-274; 2 pages
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME


Numerical simulations that incorporate a bio-chemo-mechanical model for the contractility of the cytoskeleton have been used to rationalize the following observations. Uniaxial cyclic stretching of cells causes stress fibers to align perpendicular to the stretch direction, with degree of alignment dependent on the stretch strain magnitude, as well as the frequency and the transverse strain. Conversely, equibiaxial cyclic stretching induces a uniform distribution of stress fiber orientations. Demonstrations that the model successfully predicts the alignments found experimentally are followed by a parameter study to investigate the influence of the straining frequency and the transverse contraction of the substrate. The primary predictions are as follows. The fiber alignment increases with increasing cycling frequency. Transverse contraction of the substrate causes the stress fibers to organize into two symmetrical orientations with respect to the primary stretch direction.

Copyright © 2007 by ASME
Topics: Fibers , Stress , Modeling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In