0

Full Content is available to subscribers

Subscribe/Learn More  >

Devlopment of a Cell Coculture Microfluidic Shear Device for Mechano-Transmission Study

[+] Author Affiliations
Devon Scott, Aaron Richman

University of Colorado at Boulder, Boulder, CO

Craig Lanning

University of Colorado Health Sciences Center/The Children’ Hospital, CO

Robin Shandas, Wei Tan

University of Colorado at Boulder, Boulder, COUniversity of Colorado Health Sciences Center/The Children’ Hospital, CO

Paper No. SBC2007-176700, pp. 239-240; 2 pages
doi:10.1115/SBC2007-176700
From:
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME

abstract

We have developed a microfluidic shear device that allows for the study of cell communication in a dynamically controlled biochemical and biomechanical environments simulating cells’ living environments in vivo. Such study may help to improve our understanding in the effects of hypertension-relevant and vascular development-relevant flow shear stress on cell behaviors. Endothelial cells may be a key factor for transmitting the blood flow conditions from the endothelial lining to interstitial layers and smooth muscle cells. The interstitial flow stress and the shear stress induced signaling factors may greatly alter vascular biology of these deep layers. Endothelial cells act as a mechano-transducer by converting shear stress into biochemical signaling factors. The biochemical factors diffuse to smooth muscle cells and further alter the biological structure of vascular tissues. Also, the flow shear stress will be transmitted to the interstitial tissue layer through the pores resulted from the pores in the fenestrated endothelial lining. Studies in both the mechano-transduction process and the mechano-transmission process will benefit from a biomimetic flow shear device with co-cultured cells. Our device will allow the co-culture of endothelial cells and smooth muscle cells to study these biomechanical processes. The pulmonary arterial cells are used as a model in the study. The microfluidic device developed here will be used to enhance the understanding of pulmonary vascular disease pathogenesis due to the variations in the flow shear stress.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In