Full Content is available to subscribers

Subscribe/Learn More  >

Wall Deformation, Wall Shear Stress and Atherosclerosis Around the Intercostal Ostia of C57 Mice

[+] Author Affiliations
Jin Suo, Robert E. Guldberg, Robert W. Taylor, Don P. Giddens

Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA

Dardo E. Ferrara

Emory University School of Medicine, Atlanta, GA

Paper No. SBC2007-176636, pp. 229-230; 2 pages
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME


Dorsal surfaces and upstream regions around ostia of aortic branches are favored sites of atherosclerosis. Both asymmetrical stresses in branch walls and disturbed flow patterns have been suggested as contributing to this localization. In the present study, fluorescence images of the thoracic aortic tree of C57 mice were obtained using quantum dot (Qdot) bioconjugate markers for vascular cell adhesion molecule-1 (VCAM-1) and two-photon excitation laser scanning microscopy. The images show that dorsal surfaces and upstream regions of intercostal ostia have a higher intensity of VCAM-1 than the downstream region. We also investigated blood flow patterns and wall shear stress (WSS) in the descending aorta and proximal intercostal branches of C57 mice using micro-CT imaging and ultrasound velocity measurements, combined with computational fluid dynamics (CFD). The latter investigation showed that dynamical wall deformation caused by pulsatile pressure around the ostia induces blood flow patterns which create lower and oscillating WSS in the upstream region and dorsal surface than in the distal region. Comparisons of the Qdot marker and CFD studies demonstrate that the distribution of greater expression of VCAM-1 corresponds with lower and oscillating WSS around the branch ostia. Thus, local wall deformation may contribute to disturbed flow patterns that are known to be associated with increased VCAM-1 expression.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In