Full Content is available to subscribers

Subscribe/Learn More  >

Understanding EHDA and Protein Stability

[+] Author Affiliations
Elizabeth M. Nottingham, Michelle G. Zeles-Hahn, Corinne S. Lengsfeld

University of Denver, Denver, CO

Paper No. SBC2007-176708, pp. 121-122; 2 pages
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME


Therapeutic proteins can be difficult to work with due to the fact that each protein has properties and functions that are unique. These exclusive properties are in part due to the proteins three-dimensional shape (secondary and tertiary structure). This shape is determined by bends in the amino acid sequence generated by electrostatic interactions, hydrogen bonds, and hydrophobic-hydrophilic interactions between neighboring amino acids. These bonding interactions are weak and can be severed by chemical or physical forces. Thus, therapeutic proteins can be denatured during manufacture and by methods used to deliver them to the body.

Copyright © 2007 by ASME
Topics: Stability , Proteins



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In