0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation-Guided Stimulation for Paretic Ankle Muscles During Stroke Gait

[+] Author Affiliations
J. Higginson, T. Kesar, R. Perumal, S. Binder-Macleod

University of Delaware, Newark, DE

Paper No. SBC2007-176365, pp. 11-12; 2 pages
doi:10.1115/SBC2007-176365
From:
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME

abstract

Stroke is the leading cause of long-term adult disability in the U.S. Neuronal damage in the brain results in impaired muscle coordination which induces asymmetric and abnormal walking patterns. Muscle-actuated forward dynamic simulation of walking patterns of healthy young adults has elucidated unique and synergistic roles of the uniarticular and biarticular plantarflexors. Neptune and colleagues (2001) reported that soleus delivers energy to the trunk, gastrocnemius accelerates the leg forward, and both contribute significantly to vertical support of the center of mass [1]. In a simulation of post-stroke hemiparetic gait, Higginson et al. (2006) observed that non-paretic muscles mimicked the function of healthy muscles, while paretic ankle plantarflexor function was limited and required supplemental effort by hip and knee extensors [2].

Copyright © 2007 by ASME
Topics: Simulation , Muscle

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In