0

Full Content is available to subscribers

Subscribe/Learn More  >

3D Cell Shape and Cell Fate are Regulated by the Dynamic Micro-Mechanical Properties of the Cell-ECM Interface

[+] Author Affiliations
Kimberly A. Campana, Sherry L. Voytik-Harbin

Purdue University, West Lafayette, IN

Eric Y. Shin

Northwestern University, Evanston, IL

Beverly Z. Waisner

Purdue University, Evanston, IL

Paper No. SBC2007-176626, pp. 1037-1038; 2 pages
doi:10.1115/SBC2007-176626
From:
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME

abstract

Mechanobiology is an interdisciplinary field that focuses on predicting and understanding cellular responses to mechanical loads. The extracellular matrix (ECM) represents a macromolecular framework that naturally imparts structural support and spatial organization for resident cells. The ECM also participates in the communication and transfer of mechanical loads to cells, in part, via integrin attachment to the cytoskeleton (CSK). Recently, using a tissue model in which cells are embedded in a 3D collagen ECM, we have shown that fundamental cell behaviors, including morphology, proliferation, contractility, and ECM remodeling properties, can be modulated by varying 3D microstructural organization and mechanical properties of the surrounding collagen fibrils[1]. While these and other results demonstrate the critical role played by the ECM in regulating cell behavior, the mechanical-based mechanisms underlying these critical cell-ECM interactions have yet to be fully elucidated [2].

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In