0

Full Content is available to subscribers

Subscribe/Learn More  >

Scaffold Properties Play a Critical Role in the Retention of Synthesized Glycosaminoglycans in Tissue Engineered Cartilage

[+] Author Affiliations
Lindsay E. Kugler, Kenneth W. Ng, Christopher J. O’Conor, Gerard A. Ateshian, Clark T. Hung

Columbia University, New York, NY

Paper No. SBC2007-176558, pp. 1031-1032; 2 pages
doi:10.1115/SBC2007-176558
From:
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME

abstract

Agarose has been used as a model scaffold for cartilage tissue engineering research due to its maintenance of chondrocyte phenotype, support of cartilage tissue development, and ability to transmit mechanical stimuli [1–4]. In a previous study, the temporal application of TGF-β3 for only 2 weeks resulted in explosive growth in the functional properties of tissue engineered cartilage [5]. The role of scaffolds in tissue engineering includes providing a physiologic three-dimensional environment for cells, decreased path lengths for diffusion and retention of cell elaborated matrix. In past studies by our laboratory, it was hypothesized that the scaffold properties in engineered cartilage plays a crucial role in the retention of synthesized glycosaminoglycan (GAG) molecules, a major extracellular matrix constituent of articular cartilage [6, 7]. This study focuses on testing this hypothesis using 3%, 2%, and 1% (wt/vol) agarose as scaffolds for engineered cartilage.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In