Full Content is available to subscribers

Subscribe/Learn More  >

Novel Nanostructured Calcium Phosphate Based Delivery Systems for Non-Viral Gene Delivery

[+] Author Affiliations
Dana Olton, Dong Hyun Lee, Prashant N. Kumta

Carnegie Mellon University, Pittsburgh, PA

Charles Sfeir

University of Pittsburgh, Pittsburgh, PA

Paper No. SBC2007-176286, pp. 1001-1002; 2 pages
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5


Calcium phosphate (CaP) based approaches remain an attractive option for delivering plasmid DNA (pDNA) into cultured cells [1, 2]. However, two major limitations associated with this vector exist. First, it yields lower transfection efficiencies with respect to its’ viral counterparts. Second, CaP mediated gene delivery leads to transient transgene expression. Thus, we hypothesized that these concerns could respectively be addressed by: (1) synthesizing particles with precise control of the materials’ parameters including (i.e. Ca/P ratio, particle size, crystal structure, and microstructure) and (2) incorporating the particles into a 3-D biodegradable fibrin scaffold. The goal of this study was therefore to synthesize and optimize the efficacy of both nano-structured CaP (NanoCaPs) particles and a composite scaffold comprised of fibrin, CaP and pDNA for non-viral gene delivery applications.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In