0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling the Effects of Heat Transfer Processes on Material Strain and Tension in Roll to Roll Manufacturing

[+] Author Affiliations
Youwei Lu, Prabhakar R. Pagilla

Oklahoma State University, Stillwater, OK

Paper No. DSCC2013-4075, pp. V003T48A004; 8 pages
doi:10.1115/DSCC2013-4075
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 3: Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing; System Identification (Estimation for Automotive Applications, Modeling, Therapeutic Control in Bio-Systems); Variable Structure/Sliding-Mode Control; Vehicles and Human Robotics; Vehicle Dynamics and Control; Vehicle Path Planning and Collision Avoidance; Vibrational and Mechanical Systems; Wind Energy Systems and Control
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5614-7
  • Copyright © 2013 by ASME

abstract

This paper develops governing equations for material strain and tension based on a temperature distribution model when the flexible materials (often called webs) are transported on rollers through heat transfer processes within roll-to-roll (R2R) processing machines. Heat transfer processes are employed widely in R2R systems that contain process operations such as printing, coating, lamination, etc., which require heating/cooling of the moving web material. The heat transfer processes introduce the thermal expansion/contraction of the material and changes in the elastic modulus. Thus, the temperature distribution in the moving material affects the strain distribution in the material. Because of change in strain as well as modulus as a function of temperature, tension in the material resulting from elastic strain is also affected by heating/cooling of the web. To obtain the temperature distribution, two basic heat transfer modes are considered: web wrapped on a heat transfer roller and the web span between two consecutive rollers. The governing equations for strain is then obtained using the law of conservation of mass considering the temperature effects. Subsequently, a governing equation for web tension is obtained by assuming the web is elastic with the modulus varying with temperature; an average modulus is considered for defining the constitutive relation between web strain and tension. Since it is difficult to obtain measurement of tension using load cell rollers within heat transfer processes, a tension observer is designed. To evaluate the developed governing equations, numerical simulations for a single tension zone consisting of a heat transfer roller, a web span, and a driven roller are conducted. Results from these numerical model simulations are presented and discussed.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In