0

Full Content is available to subscribers

Subscribe/Learn More  >

Network Control of Vehicle Lateral Dynamics With Control Allocation and Dynamic Message Priority Assignment

[+] Author Affiliations
Zhibin Shuai

The Ohio State University, Columbus, OHTsinghua University, Beijing, China

Hui Zhang, Junmin Wang

The Ohio State University, Columbus, OH

Jianqiu Li, Minggao Ouyang

Tsinghua University, Beijing, China

Paper No. DSCC2013-3890, pp. V003T46A003; 10 pages
doi:10.1115/DSCC2013-3890
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 3: Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing; System Identification (Estimation for Automotive Applications, Modeling, Therapeutic Control in Bio-Systems); Variable Structure/Sliding-Mode Control; Vehicles and Human Robotics; Vehicle Dynamics and Control; Vehicle Path Planning and Collision Avoidance; Vibrational and Mechanical Systems; Wind Energy Systems and Control
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5614-7
  • Copyright © 2013 by ASME

abstract

In this paper we study the lateral motion control and torque allocation for four-wheel-independent-drive electric vehicles (4WID-EVs) with combined active front steering (AFS) and direct yaw moment control (DYC) through in-vehicle networks. It is well known that the in-vehicle networks and x-by-wire technologies have considerable advantages over the traditional point-to-point communications, and bring great strengths to 4WID-EVs. However, there are also bandwidth limitations which would lead to message time delays in network communication. We propose a method on effectively utilizing the limited bandwidth resources and attenuating the adverse influence of in-vehicle network-induced time delays, based on the idea of dynamic message priority assignment according to the vehicle states and control signals. Simulation results from a high-fidelity vehicle model in CarSim® show that the proposed vehicle lateral control and torque allocation algorithm can improve the 4WID-EV lateral motion control performance, and the proposed message priority dynamic assignment algorithm can significantly reduce the adverse influence of the in-vehicle network-induced time delays.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In