Full Content is available to subscribers

Subscribe/Learn More  >

Vehicle Roll Stabilization Enhancement Using a Variable Stiffness Architecture: Kinematic Control

[+] Author Affiliations
Olugbenga M. Anubi, Carl D. Crane, III

University of Florida, Gainesville, FL

Paper No. DSCC2013-3829, pp. V003T46A001; 10 pages
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 3: Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing; System Identification (Estimation for Automotive Applications, Modeling, Therapeutic Control in Bio-Systems); Variable Structure/Sliding-Mode Control; Vehicles and Human Robotics; Vehicle Dynamics and Control; Vehicle Path Planning and Collision Avoidance; Vibrational and Mechanical Systems; Wind Energy Systems and Control
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5614-7
  • Copyright © 2013 by ASME


A variable stiffness architecture is used in the suspension system to counteract the body roll moment, thereby enhancing the roll stability of the vehicle. The variation of stiffness concept uses the “reciprocal actuation” to effectively transfer energy between a vertical traditional strut and a horizontal oscillating control mass, thereby improving the energy dissipation of the overall suspension. The lateral dynamics of the system is developed using a bicycle model. The accompanying roll dynamics are also developed and validated using experimental data. The positions of the left and right control masses are optimally allocated to reduce the effective body roll and roll rate. Simulation results show that the resulting variable stiffness suspension system has more than 50% improvement in roll response over the traditional constant stiffness counterparts. The simulation scenarios examined is the fishhook maneuver.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In