0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling and Simulation of Human Walking With Wearable Powered Assisting Device

[+] Author Affiliations
Siniša Slavnić, Adrian Leu, Danijela Ristić-Durrant, Axel Gräser

University of Bremen, Bremen, Germany

Paper No. DSCC2013-4049, pp. V003T45A005; 6 pages
doi:10.1115/DSCC2013-4049
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 3: Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing; System Identification (Estimation for Automotive Applications, Modeling, Therapeutic Control in Bio-Systems); Variable Structure/Sliding-Mode Control; Vehicles and Human Robotics; Vehicle Dynamics and Control; Vehicle Path Planning and Collision Avoidance; Vibrational and Mechanical Systems; Wind Energy Systems and Control
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5614-7
  • Copyright © 2013 by ASME

abstract

For the purpose of developing robot-assisted human walking systems, human and robot walking dynamics are modeled using models of different complexity depending on simulation scenarios in different phases of robotic system development and selected walking parameters to be analyzed. This paper addresses the early modeling and simulation phase of the development of a novel mobile robot-assisted gait rehabilitation system to be used as a demonstrator for a cognitive robot control architecture currently under development. For simulation purposes dynamical models of walking human and powered orthosis are developed in multi-body simulation software (MSC Adams) using the LifeMod plug-in while the control algorithms are developed in Matlab. The paper introduces a novel ROS (Robot Operating System) based communication established between the real system software modules and the simulation environment. The performance evaluation was performed by running the simulation with motion data which were obtained using marker-based motion capture system and which were implemented as ROS node.

Copyright © 2013 by ASME
Topics: Simulation , Modeling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In