Full Content is available to subscribers

Subscribe/Learn More  >

Bio-Inspired Robot Control for Human-Robot Bi-Manual Manipulation

[+] Author Affiliations
Stephen Warren, Panagiotis Artemiadis

Arizona State University, Tempe, AZ

Paper No. DSCC2013-3834, pp. V003T45A001; 8 pages
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 3: Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing; System Identification (Estimation for Automotive Applications, Modeling, Therapeutic Control in Bio-Systems); Variable Structure/Sliding-Mode Control; Vehicles and Human Robotics; Vehicle Dynamics and Control; Vehicle Path Planning and Collision Avoidance; Vibrational and Mechanical Systems; Wind Energy Systems and Control
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5614-7
  • Copyright © 2013 by ASME


As robots are increasingly used in human-cluttered environments, the requirement of human-likeness in their movements becomes essential. Although robots perform a wide variety of demanding tasks around the world in factories, remote sites and dangerous environments, they are still lacking the ability to coordinate with humans in simple, every-day life bi-manual tasks, e.g. removing a jar lid. This paper focuses on the introduction of bio-inspired control schemes for robot arms that coordinate with human arms in bi-manual manipulation tasks. Using data captured from human subjects performing a variety of every-day bi-manual life tasks, we propose a bio-inspired controller for a robot arm, that is able to learn human inter- and intra-arm coordination during those tasks. We embed human arm coordination in low-dimension manifolds, and build potential fields that attract the robot to human-like configurations using the probability distributions of the recorded human data. The method is tested using a simulated robot arm that is identical in structure to the human arm. A preliminary evaluation of the approach is also carried out using an anthropomorphic robot arm in bi-manual manipulation task with a human subject.

Copyright © 2013 by ASME
Topics: Robots , Biomimetics



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In