0

Full Content is available to subscribers

Subscribe/Learn More  >

Fast Modeling and Identification of Robot Dynamics Using the Lasso

[+] Author Affiliations
Cong Wang, Xiaowen Yu, Masayoshi Tomizuka

University of California, Berkeley, CA

Paper No. DSCC2013-3767, pp. V003T39A002; 4 pages
doi:10.1115/DSCC2013-3767
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 3: Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing; System Identification (Estimation for Automotive Applications, Modeling, Therapeutic Control in Bio-Systems); Variable Structure/Sliding-Mode Control; Vehicles and Human Robotics; Vehicle Dynamics and Control; Vehicle Path Planning and Collision Avoidance; Vibrational and Mechanical Systems; Wind Energy Systems and Control
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5614-7
  • Copyright © 2013 by ASME

abstract

This paper presents an approach for fast modeling and identification of robot dynamics. By using a data-driven machine learning approach, the process is simplified considerably from the conventional analytical method. Regressor selection using the Lasso (l1-norm penalized least squares regression) is used. The method is explained with a simple example of a two-link direct-drive robot. Further demonstration is given by applying the method to a three-link belt-driven robot. Promising result has been demonstrated.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In