0

Full Content is available to subscribers

Subscribe/Learn More  >

Iterative-Control-Based High-Speed Direct Mask Fabrication via Ultrasonic-Vibration-Assisted Mechanical Plowing

[+] Author Affiliations
Zhihua Wang, Qingze Zou

Rutgers, the State University of New Jersey, Piscataway, NJ

Paper No. DSCC2013-3945, pp. V003T37A003; 8 pages
doi:10.1115/DSCC2013-3945
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 3: Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing; System Identification (Estimation for Automotive Applications, Modeling, Therapeutic Control in Bio-Systems); Variable Structure/Sliding-Mode Control; Vehicles and Human Robotics; Vehicle Dynamics and Control; Vehicle Path Planning and Collision Avoidance; Vibrational and Mechanical Systems; Wind Energy Systems and Control
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5614-7
  • Copyright © 2013 by ASME

abstract

Mechanical indentation and plowing is one of the most widely used methods in probe-based nanolithography. Compared to other probe-based nanolithography techniques such as the Dip-pen and the milliped, mechanical plowing is not restrictive to conductive materials and/or soft materials. However, like other probe-based nanolithgraphy techniques, the low-throughput has hindered the implementation of this technique in practices. The fabrication throughput, although can be increased via parallel-probe, is ultimately limited by the tracking precision of the probe relative to the sample during the plowing process. In this paper, a new iterative learning control technique is proposed and utilized to account for the adverse effects encountered in high-speed, large-range mechanical plowing nanolithography, including the hysteresis, the vibrational dynamics, and the cross-axis dynamics-coupling effects. Moreover, vertical (normal) ultrasonic vibration of the cantilever is introduced during the fabrication process to improve the fabrication quality. This approach is implemented to directly fabricate patterns on a mask with a tungsten layer deposited on a silicon dioxide substrate. The experimental results demonstrated that a relatively large-size pattern of four grooves (20 μm in length) can be fabricated at a high-speed of ∼5 mm/sec, with the line width and line depth at ∼95 nm and 2 nm, respectively. A fine pattern of the word ‘NANO’ is also achieved at the speed of ∼5 mm/sec. Such a high-speed direct lithography of mask with nanoscale line width and depth points the use of mechanical-plowing technique in strategic-important applications such as mask lithography for semiconductor industry.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In