Full Content is available to subscribers

Subscribe/Learn More  >

Flatness-Based Open Loop Command Tracking for Quasistatic Microscanners

[+] Author Affiliations
Klaus Janschek

Technische Universität Dresden, Dresden, Germany

Richard Schroedter, Thilo Sandner

Fraunhofer Institute for Photonic Microsystems, Dresden, Germany

Paper No. DSCC2013-3865, pp. V003T37A001; 5 pages
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 3: Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing; System Identification (Estimation for Automotive Applications, Modeling, Therapeutic Control in Bio-Systems); Variable Structure/Sliding-Mode Control; Vehicles and Human Robotics; Vehicle Dynamics and Control; Vehicle Path Planning and Collision Avoidance; Vibrational and Mechanical Systems; Wind Energy Systems and Control
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5614-7
  • Copyright © 2013 by ASME


This paper describes a nonlinear command tracking scheme for an electrostatic laser scanning micromirror assembly. The results are based on an innovative gimballed comb transducer concept developed at the Fraunhofer Institute for Photonic Microsystems. The outer mirror axis is designed as a Staggered Vertical Comb (SVC) in out-of-plane configuration and it shall provide a quasistatic operation with large deflection angles for triangular trajectories. The challenges for trajectory design and open loop command tracking are determined by the inherently nonlinear transducer characteristics and the lightly damped mass-spring dynamics. In this paper a flatness-based trajectory design is presented that considers the nonlinear transducer dynamics as well as the nonlinear elastic mechanical suspension with model parameters derived from ANSYS analysis. The paper discusses design constraints and detailed design considerations and it shows proof of concept performance results based on experimental verification with a real microscanner assembly.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In