0

Full Content is available to subscribers

Subscribe/Learn More  >

Robust Observer Design for Lipschitz Nonlinear Systems With Parametric Uncertainty

[+] Author Affiliations
Yan Wang, David M. Bevly

Auburn University, Auburn, AL

Paper No. DSCC2013-4104, pp. V003T35A006; 10 pages
doi:10.1115/DSCC2013-4104
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 3: Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing; System Identification (Estimation for Automotive Applications, Modeling, Therapeutic Control in Bio-Systems); Variable Structure/Sliding-Mode Control; Vehicles and Human Robotics; Vehicle Dynamics and Control; Vehicle Path Planning and Collision Avoidance; Vibrational and Mechanical Systems; Wind Energy Systems and Control
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5614-7
  • Copyright © 2013 by ASME

abstract

This paper discusses optimal and robust observer design for the Lipschitz nonlinear systems. The stability analysis for the Lure problem is first reviewed. Then, a two-DOF nonlinear observer is proposed so that the observer error dynamic model can be transformed to an equivalent Lure system. In this framework, the difference of the nonlinear parts in the vector fields of the original system and observer is modeled as a nonlinear memoryless block that is covered by a multivariable sector condition or an equivalent semi-algebraic set defined by a quadratic polynomial inequality. Then, a sufficient condition for asymptotic stability of the observer error dynamics is formulated in terms of the feasibility of polynomial matrix inequalities (PMIs), which can be solved by Lasserre’s moment relaxation. Furthermore, various quadratic performance criteria, such as H2 and H, can be easily incorporated in this framework. Finally, a parameter adaptation algorithm is introduced to cope with the parameter uncertainty.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In