0

Full Content is available to subscribers

Subscribe/Learn More  >

An Adaptive Control Method With Low-Resolution Encoder

[+] Author Affiliations
Zhenyu Zhang

Western Digital Corporation, Irvine, CA

Nejat Olgac

University of Connecticut, Storrs, CT

Paper No. DSCC2013-3702, pp. V003T35A001; 10 pages
doi:10.1115/DSCC2013-3702
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 3: Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing; System Identification (Estimation for Automotive Applications, Modeling, Therapeutic Control in Bio-Systems); Variable Structure/Sliding-Mode Control; Vehicles and Human Robotics; Vehicle Dynamics and Control; Vehicle Path Planning and Collision Avoidance; Vibrational and Mechanical Systems; Wind Energy Systems and Control
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5614-7
  • Copyright © 2013 by ASME

abstract

An adaptive control methodology with a low-resolution encoder feedback is presented for a biomedical application, the Ros-Drill (Rotationally Oscillating Drill). It is developed primarily for ICSI (Intra-Cytoplasmic Sperm Injection) operations, with the objective of tracking a desired oscillatory motion at the tip of a microscopic glass pipette. It is an inexpensive set-up, which creates high-frequency (higher than 500 Hz) and small-amplitude (around 0.2 deg) rotational oscillations at the tip of an injection pipette. These rotational oscillations enable the pipette to drill into cell membranes with minimum biological damage. Such a motion control procedure presents no particular difficulty when it uses sufficiently precise motion sensors. However, size, costs and accessibility of technology on the hardware components severely constrain the sensory capabilities. Consequently the control mission and the trajectory tracking are adversely affected. This paper presents a dedicated novel adaptive feedback control method to achieve a satisfactory trajectory tracking capability. We demonstrate via experiments that the tracking of the harmonic rotational motion is achieved with desirable fidelity.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In