0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Gait Design for Systems With Drift on SO(3)

[+] Author Affiliations
Matthew Travers, Howie Choset

Carnegie Mellon University, Pittsburgh, PA

Paper No. DSCC2013-3946, pp. V002T33A005; 7 pages
doi:10.1115/DSCC2013-3946
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 2: Control, Monitoring, and Energy Harvesting of Vibratory Systems; Cooperative and Networked Control; Delay Systems; Dynamical Modeling and Diagnostics in Biomedical Systems; Estimation and Id of Energy Systems; Fault Detection; Flow and Thermal Systems; Haptics and Hand Motion; Human Assistive Systems and Wearable Robots; Instrumentation and Characterization in Bio-Systems; Intelligent Transportation Systems; Linear Systems and Robust Control; Marine Vehicles; Nonholonomic Systems
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5613-0
  • Copyright © 2013 by ASME

abstract

Geckos that jump, cats that fall, and satellites that are inertially controlled fundamentally locomote in the same way. These systems are bodies in free flight that actively reorientate under the influence of conservation of angular momentum. We refer to such bodies as inertial systems. This work presents a novel control method for inertial systems with drift that combines geometric methods and computational control. In previous work, which focused on inertial systems starting from rest, a set of visual tools was developed that readily allowed on to design gaits. A key insight of this work was deriving coordinates, called minimum perturbation coordinates, which allowed the visual tools to be applied to the design of a wide range of motions. This paper draws upon the same insight to show that it is possible to approximately analyze the kinematic and dynamic contributions to net motion independently. This approach is novel because it uses geometric tools to support computational reduction in automatic gait generation on three-dimensional spaces.

Copyright © 2013 by ASME
Topics: Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In