Full Content is available to subscribers

Subscribe/Learn More  >

Energy-Based Limit Cycle Compensation for Dynamically Balancing Wheeled Inverted Pendulum Machines

[+] Author Affiliations
Hari Vasudevan, Aaron M. Dollar, John B. Morrell

Yale University, New Haven, CT

Paper No. DSCC2013-3843, pp. V002T33A001; 8 pages
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 2: Control, Monitoring, and Energy Harvesting of Vibratory Systems; Cooperative and Networked Control; Delay Systems; Dynamical Modeling and Diagnostics in Biomedical Systems; Estimation and Id of Energy Systems; Fault Detection; Flow and Thermal Systems; Haptics and Hand Motion; Human Assistive Systems and Wearable Robots; Instrumentation and Characterization in Bio-Systems; Intelligent Transportation Systems; Linear Systems and Robust Control; Marine Vehicles; Nonholonomic Systems
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5613-0
  • Copyright © 2013 by ASME


In this paper we present an energy-based algorithm to minimize limit cycles in dynamically balancing wheeled inverted pendulum (IP) machines. Because the algorithm is not based on the numerical value of parameters, performance is robust and accounts for mechanical reconfiguration and wear. The effects of phenomena such as drive-train friction, rolling friction, backlash and sensor bandwidth are well known, causing either limit cycles or instabilities in IP balancing machines and yet compensation or control design to mitigate these effects are not well known. The effects of these non-linearities can be observed in the energy behavior of IP balancing machines, hence, as a broader goal we seek to establish an energy-based framework for the investigation of non-linearities in this class of machines. We successfully demonstrate the effectiveness of our algorithm on a two-wheeled IP balancing machine, “Charlie”, developed in our laboratory. As an example we show a reduction in the amplitude of limit cycles by 95.9% in wheel angle and 89.8% in pitch over a 10 second period.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In