0

Full Content is available to subscribers

Subscribe/Learn More  >

Towards the Development of Optogenetically-Controlled Skeletal Muscle Actuators

[+] Author Affiliations
Hyeonyu Kim, Devin Neal, H. Harry Asada

Massachusetts Institute of Technology, Cambridge, MA

Paper No. DSCC2013-4062, pp. V002T29A005; 5 pages
doi:10.1115/DSCC2013-4062
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 2: Control, Monitoring, and Energy Harvesting of Vibratory Systems; Cooperative and Networked Control; Delay Systems; Dynamical Modeling and Diagnostics in Biomedical Systems; Estimation and Id of Energy Systems; Fault Detection; Flow and Thermal Systems; Haptics and Hand Motion; Human Assistive Systems and Wearable Robots; Instrumentation and Characterization in Bio-Systems; Intelligent Transportation Systems; Linear Systems and Robust Control; Marine Vehicles; Nonholonomic Systems
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5613-0
  • Copyright © 2013 by ASME

abstract

Engineered skeletal muscle tissue has the potential to be used as dual use actuator and stress-bearing material providing numerous degrees of freedom and with significant active stress generation. To exploit the potential features, however, technologies must be established to generate mature muscle strips that can be controlled with high fidelity. Here, we present a method for creating mature 3-D skeletal muscle tissues that contract in response to optical activation stimuli. The muscle strips are fascicle-like, consisting of several mm-long multi-nucleate muscle cells bundled together. We have found that applying a tension to the fascicle-like muscle tissue promotes maturation of the muscle. The fascicle-like muscle tissue is controlled with high spatiotemporal resolution based on optogenetic coding. The mouse myoblasts C2C12 were transfected with Channelrhodopsin-2 to enable light (∼470 nm) to control muscle contraction. The 3D muscle tissue not only twitches in response to an impulse light beam, but also exhibits a type of tetanus, a prolonged contraction of continuous stimuli, for the first time. In the following, the materials and culturing method used for 3D muscle generation is presented, followed by experimental results of muscle constructs and optogenetic control of the 3D muscle tissue.

Copyright © 2013 by ASME
Topics: Actuators , Muscle

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In