0

Full Content is available to subscribers

Subscribe/Learn More  >

Kinematics and Dynamics of a Biologically Inspired Index Finger Exoskeleton

[+] Author Affiliations
Priyanshu Agarwal, Arnold Hechanova, Ashish D. Deshpande

The University of Texas at Austin, Austin, TX

Paper No. DSCC2013-3893, pp. V002T28A001; 10 pages
doi:10.1115/DSCC2013-3893
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 2: Control, Monitoring, and Energy Harvesting of Vibratory Systems; Cooperative and Networked Control; Delay Systems; Dynamical Modeling and Diagnostics in Biomedical Systems; Estimation and Id of Energy Systems; Fault Detection; Flow and Thermal Systems; Haptics and Hand Motion; Human Assistive Systems and Wearable Robots; Instrumentation and Characterization in Bio-Systems; Intelligent Transportation Systems; Linear Systems and Robust Control; Marine Vehicles; Nonholonomic Systems
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5613-0
  • Copyright © 2013 by ASME

abstract

Rehabilitation of upper extremity, especially hands, is critical for the restoration of independence in activities of daily living for individuals suffering from hand disabilities. In this work, we propose a biologically-inspired design of an index finger exoskeleton. The design has passive stiffness at each joint with antagonistic tendon driven actuation allowing for (1) improved kinematic and dynamic compatibility for effective therapy; and (2) conformation of exoskeleton and finger joints axes of rotation. We present a kinematics and dynamics model of the coupled index finger-exoskeleton system that incorporates human-like passive torques at the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints. We carry out simulations using this coupled system model to study the role of passive stiffness on workspace and tendon forces, actuator force and displacement requirements, and reaction forces and moments acting at the finger joints for an index finger flexion-extension task. Results show that accurately modeling the coupled system can help in optimizing the design and control of the device, thus, exploiting its passive dynamics for effective functioning.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In