0

Full Content is available to subscribers

Subscribe/Learn More  >

Bridge Life Extension Using Semi-Active Vibration Control

[+] Author Affiliations
G. Nelson, R. Rajamani, A. Gastineau, A. Schultz, S. Wojtkiewicz

University of Minnesota, Minneapolis, MN

Paper No. DSCC2013-3844, pp. V001T15A003; 9 pages
doi:10.1115/DSCC2013-3844
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 1: Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications; Bio-Medical and Bio-Mechanical Systems; Biomedical Robots and Rehab; Bipeds and Locomotion; Control Design Methods for Adv. Powertrain Systems and Components; Control of Adv. Combustion Engines, Building Energy Systems, Mechanical Systems; Control, Monitoring, and Energy Harvesting of Vibratory Systems
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5612-3
  • Copyright © 2013 by ASME

abstract

The fatigue life of a bridge can be extended by fifty years just by reducing the peak strain levels it experiences by 33%. This paper utilizes a dynamic model of the Cedar Avenue tied arch steel bridge in Minnesota to investigate active control technologies for peak strain reduction. Simulations show that the use of passive structural modification devices such as stiffeners and dampers is inadequate to reduce the key resonant peaks in the frequency response of the bridge. Both active and semi-active vibration control strategies are then pursued. Active vibration control can effectively reduce all resonant peaks of interest, but is practically difficult to implement on a bridge due to power, size, and cost considerations. Semi-active control with a variable orifice damper in which the damping coefficient is changed in real-time using bridge vibration feedback can be practically implemented. Simulation results show that the proposed semi-active control system can reduce many of the resonant peaks of interest, but is unable to reduce the response at one key resonant frequency. Further analysis reveals that the location of the actuator on the bridge chosen for the semi-active controller is inappropriate for controlling the specific resonant frequency of issue. By modifying the actuator location, it would be possible to obtain control of all bridge resonant frequencies with the semi-active control system.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In