0

Full Content is available to subscribers

Subscribe/Learn More  >

Decentralized Control of Print Registration in Roll-to-Roll Printing Presses

[+] Author Affiliations
Aravind Seshadri, Prabhakar R. Pagilla

Oklahoma State University, Stillwater, OK

Paper No. DSCC2013-3992, pp. V001T14A006; 10 pages
doi:10.1115/DSCC2013-3992
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 1: Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications; Bio-Medical and Bio-Mechanical Systems; Biomedical Robots and Rehab; Bipeds and Locomotion; Control Design Methods for Adv. Powertrain Systems and Components; Control of Adv. Combustion Engines, Building Energy Systems, Mechanical Systems; Control, Monitoring, and Energy Harvesting of Vibratory Systems
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5612-3
  • Copyright © 2013 by ASME

abstract

Roll-to-roll (R2R) manufacturing is a type of continuous manufacturing process extensively used to produce a wide variety of consumer products, such as plastics, paper, films, non-wovens, textile, etc. Recent advances in nanotechnology and material science have enabled the possibility of manufacturing electronics on a flexible substrate using R2R printing techniques. Even though the feasibility of printing electronics on flexible substrates has been extensively studied, continuous printing on a moving substrate using R2R techniques has not been adequately investigated. To facilitate progress towards high precision R2R printing, a systematic investigation of the various aspects that affect print quality and ways in which those can be influenced by different control configurations facilitated by choice and location of various components of the print section is necessary.

In this paper we investigate two common control configurations for R2R printing based on the structure of the R2R print section and various components available for control. For these two configurations we develop a state-space model that contains both state and input delays. We propose a decentralized, memoryless, state feedback control law for both control configurations and show the stability of the closed loop systems using frequency domain delay-dependent stability conditions. These control configurations are evaluated and compared using model simulations and discussions on the effectiveness of each strategy are provided.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In