0

Full Content is available to subscribers

Subscribe/Learn More  >

Closed-Loop Control of SI-HCCI Mode Switch Using Fuel Injection Timing

[+] Author Affiliations
Nikhil Ravi, Michael Jagsch, Joel Oudart, Nalin Chaturvedi, David Cook, Aleksandar Kojic

Robert Bosch Research and Technology Center, Palo Alto, CA

Paper No. DSCC2013-3785, pp. V001T12A001; 9 pages
doi:10.1115/DSCC2013-3785
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 1: Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications; Bio-Medical and Bio-Mechanical Systems; Biomedical Robots and Rehab; Bipeds and Locomotion; Control Design Methods for Adv. Powertrain Systems and Components; Control of Adv. Combustion Engines, Building Energy Systems, Mechanical Systems; Control, Monitoring, and Energy Harvesting of Vibratory Systems
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5612-3
  • Copyright © 2013 by ASME

abstract

Homogeneous charge compression ignition (HCCI) provides improved efficiency and emissions relative to current engine technologies. One of the barriers to implementing HCCI on production engines is the development of a robust control strategy to transition from traditional spark-ignition (SI) mode to HCCI mode and back. This paper presents such a strategy, based on the control of combustion phasing using fuel injection timing during the mode switch from SI to HCCI. The controller is based on a cycle-by-cycle combustion model developed in previous work. In order to obtain a state estimator for both modes, the model is linearized around operating points corresponding to the steady-states before (SI) and after (HCCI) the switch. The linearized HCCI model is used to synthesize a closed-loop controller to track a desired combustion phasing, with fuel injection timing as the controlled input. The control strategy is tested on a single-cylinder HCCI engine with direct injection. Experimental results at different operating points show that the controller is able to maintain a desirable phasing transient during the mode switch, prevent cycles with very early or late phasing and enable smooth transitions with minimal load fluctuations.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In