0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation on the Energy Management Strategy for Hydraulic Hybrid Wheel Loaders

[+] Author Affiliations
Feng Wang, Mohd Azrin Mohd Zulkefli, Zongxuan Sun, Kim A. Stelson

University of Minnesota, Minneapolis, MN

Paper No. DSCC2013-3949, pp. V001T11A005; 10 pages
doi:10.1115/DSCC2013-3949
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 1: Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications; Bio-Medical and Bio-Mechanical Systems; Biomedical Robots and Rehab; Bipeds and Locomotion; Control Design Methods for Adv. Powertrain Systems and Components; Control of Adv. Combustion Engines, Building Energy Systems, Mechanical Systems; Control, Monitoring, and Energy Harvesting of Vibratory Systems
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5612-3
  • Copyright © 2013 by ASME

abstract

Energy management strategies for a hydraulic hybrid wheel loader are studied in this paper. The architecture of the hydraulic hybrid wheel loader is first presented and the differences of the powertrain and the energy management system between on-road vehicles and wheel loaders are identified. Unlike the on-road vehicles where the engine only powers the drivetrain, the engine in a wheel loader powers both the drivetrain and the working hydraulic system. In a non-hybrid wheel loader, the two sub-systems interfere with each other since they share the same engine shaft. By using a power split drivetrain, it not only allows for optimal engine operation and regenerative braking, but also eliminates interferences between driving and working functions, which improve the productivity, fuel efficiency and operability of the wheel loader. An energy management strategy (EMS) based on dynamic programming (DP) is designed to optimize the operation of both the power split drivetrain and the working hydraulic system. A short loading cycle is selected as the duty cycle. The EMS based on DP is compared with a rule-based strategy through simulation.

Copyright © 2013 by ASME
Topics: Wheels

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In