Full Content is available to subscribers

Subscribe/Learn More  >

Control Design for Cancellation of Unnatural Reaction Torque and Vibrations in Variable-Gear-Ratio Steering System

[+] Author Affiliations
Atsushi Oshima, Sumio Sugita

NSK Ltd, Fujisawa, Kanagawa, Japan

Xu Chen, Masayoshi Tomizuka

University of California, Berkeley, Berkeley, CA

Paper No. DSCC2013-3797, pp. V001T11A003; 10 pages
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 1: Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications; Bio-Medical and Bio-Mechanical Systems; Biomedical Robots and Rehab; Bipeds and Locomotion; Control Design Methods for Adv. Powertrain Systems and Components; Control of Adv. Combustion Engines, Building Energy Systems, Mechanical Systems; Control, Monitoring, and Energy Harvesting of Vibratory Systems
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5612-3
  • Copyright © 2013 by ASME


Variable-gear-ratio steering is an advanced feature in automotive vehicles. As the name suggest, it changes the steering gear ratio depending on the speed of the vehicle. This feature can simplify steering for the driver, which leads to various advantages, such as improved vehicle comfort, stability, and safety. One serious problem, however, is that the variable-gear-ratio system generates unnatural torque to the driver whenever the variable-gear-ratio control is activated. Such unnatural torque includes both low-frequency and steering-speed-dependent components. This paper proposes a control method to cancel this unnatural torque. We address the problem by using a tire sensor and a set of feedback and feedforward algorithms. Effectiveness of the proposed method is experimentally verified using a hardware-in-the-loop experimental setup. Stability and robustness under model uncertainties are evaluated.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In