0

Full Content is available to subscribers

Subscribe/Learn More  >

Timoshenko Beam Model for Exploration and Sensing With a Continuum Centipede Inspired Robot

[+] Author Affiliations
Javad S. Fattahi, Davide Spinello

University of Ottawa, Ottawa, ON, Canada

Paper No. DSCC2013-4103, pp. V001T07A006; 8 pages
doi:10.1115/DSCC2013-4103
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 1: Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications; Bio-Medical and Bio-Mechanical Systems; Biomedical Robots and Rehab; Bipeds and Locomotion; Control Design Methods for Adv. Powertrain Systems and Components; Control of Adv. Combustion Engines, Building Energy Systems, Mechanical Systems; Control, Monitoring, and Energy Harvesting of Vibratory Systems
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5612-3
  • Copyright © 2013 by ASME

abstract

We present the continuum model of a robot inspired by organisms like centipedes and polychaete worms. The continuum model is obtained as the limit of a rigid body chain with pinned elements, which leads to a Timoshenko beam model that is described by a one dimensional continuum with local Euclideian structure. The local Euclideian structure models the cross sections that are kinematically described by their position and orientation. The leg structures in the biological systems are modeled in the continuum limit as a distribution of compliant elements. Modal properties of the system are investigated. The compliance of the legs can be exploited for sensing purposes with specific application to the reconstruction of the surrounding environment and to the estimation of physical properties. The class of models in this papers applies to the continuum description of several emerging robotic application that range from tools for exploration in hazardous or generally not accessible environments (to humans) to novel healthcare systems as for example endoscopic tools for diagnostic in the gastrointestinal tract.

Copyright © 2013 by ASME
Topics: Robots

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In