Full Content is available to subscribers

Subscribe/Learn More  >

Modeling and Control of a Thermoelastic Beam

[+] Author Affiliations
Ilhan Tuzcu, Javier Gonzalez-Rocha

California State University, Sacramento, CA

Paper No. DSCC2013-4025, pp. V001T06A004; 6 pages
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 1: Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications; Bio-Medical and Bio-Mechanical Systems; Biomedical Robots and Rehab; Bipeds and Locomotion; Control Design Methods for Adv. Powertrain Systems and Components; Control of Adv. Combustion Engines, Building Energy Systems, Mechanical Systems; Control, Monitoring, and Energy Harvesting of Vibratory Systems
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5612-3
  • Copyright © 2013 by ASME


The objective of this paper is to model a thermoelastic beam and use thermoelectric heat actuators dispersed over the beam to control not only its vibration, but also its temperature. The model is represented by two coupled partial differential equations governing the elastic bending displacement and temperature variation over the length of the beam. The partial differential equations are replaced by a set of ordinary differential equations through discretization. The first-order ordinary differential equations are cast in the compact state-space form to be used in the thermoelastic analysis and control. The Linear Quadratic Gaussian (LQG) is used for control design. An numerical application to a uniform cantilever beam demonstrates the coupling between the temperature and the elastic displacement and feasibility of using thermoelectric actuators in controlling the vibration and temperature simultaneously.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In