0

Full Content is available to subscribers

Subscribe/Learn More  >

Ultra Sensitive Piezoelectric-Based Microcantilever Sensor Operating at High Modes for Detection of Ultrasmall Masses

[+] Author Affiliations
Samira Faegh, Nader Jalili

Northeastern University, Boston, MA

Paper No. DSCC2013-3938, pp. V001T06A003; 10 pages
doi:10.1115/DSCC2013-3938
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 1: Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications; Bio-Medical and Bio-Mechanical Systems; Biomedical Robots and Rehab; Bipeds and Locomotion; Control Design Methods for Adv. Powertrain Systems and Components; Control of Adv. Combustion Engines, Building Energy Systems, Mechanical Systems; Control, Monitoring, and Energy Harvesting of Vibratory Systems
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5612-3
  • Copyright © 2013 by ASME

abstract

Detection of ultrasmall masses such as proteins and pathogens has been made possible as a result of nano-technological advancements. Development of label-free and highly sensitive biosensors has enabled the transduction of molecular recognition into detectable physical quantities. MicroCantilever (MC)-based systems have played a widespread role in developing such biosensors. One of the most important drawbacks of the available biosensors their high cost. Moreover, biosensors are normally quipped with external devices such as actuator and read out systems which are bulky and expensive. A unique self-sensing detection technique is proposed in this paper in order to address the limitations of the measurement systems. A number of approaches have been reported for enhancing the sensitivity of MC-based systems including geometry modification, employing nanoparticle-enhanced MCs and operating MCs in lateral and torsional modes. Although being investigated, there have not been analytical high fidelity models describing comprehensive dynamics and behavior of MCs operating in high modes. In this study, a comprehensive mathematical modeling is presented for the proposed self-sensing detection platform operating at ultrahigh mode using distributed-parameters system modeling. Mode convergence theory was adopted to have an accurate level of estimation. An extensive experimental setup was built using piezoelectric MC operating at high mode which verified theoretical modeling results. Finally, the whole platform was utilized as a biosensor for detection of ultrasmall adsorbed mass along with the theoretical and experimental results and verification. It was proved that operating MC at ultrahigh mode increases the sensitivity of system to detect adsorbed mass as a result of increased quality factor.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In