0

Full Content is available to subscribers

Subscribe/Learn More  >

Proportional Navigation (PN) Based Tracking of Ground Targets by Quadrotor UAVs

[+] Author Affiliations
Ruoyu Tan

University of Cincinnati, Cincinnati, OH

Manish Kumar

University of Toledo, Toledo, OH

Paper No. DSCC2013-3887, pp. V001T01A004; 10 pages
doi:10.1115/DSCC2013-3887
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 1: Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications; Bio-Medical and Bio-Mechanical Systems; Biomedical Robots and Rehab; Bipeds and Locomotion; Control Design Methods for Adv. Powertrain Systems and Components; Control of Adv. Combustion Engines, Building Energy Systems, Mechanical Systems; Control, Monitoring, and Energy Harvesting of Vibratory Systems
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5612-3
  • Copyright © 2013 by ASME

abstract

This paper addresses the problem of controlling a rotary wing Unmanned Aerial Vehicle (UAV) tracking a target moving on ground. The target tracking problem by UAVs has received much attention recently and several techniques have been developed in literature most of which have been applied to fixed wing aircrafts. The use of quadrotor UAVs, the subject of this paper, for target tracking presents several challenges especially for highly maneuvering targets since the development of time-optimal controller (required if target is maneuvering fast) for quadrotor UAVs is extremely difficult due to highly non-linear dynamics. The primary contribution of this paper is the development of a proportional navigation (PN) based method and its implementation on quad-rotor UAVs to track moving ground target. The PN techniques are known to be time-optimal in nature and have been used in literature for developing guidance systems for missiles. There are several types of guidance laws that come within the broad umbrella of the PN method. The paper compares the performance of these guidance laws for their application on quadrotors and chooses the one that performs the best. Furthermore, to apply this method for target tracking instead of the traditional objective of target interception, a switching strategy has also been designed. The method has been compared with respect to the commonly used Proportional Derivative (PD) method for target tracking. The experiments and numerical simulations performed using maneuvering targets show that the proposed tracking method not only carries out effective tracking but also results into smaller oscillations and errors when compared to the widely used PD tracking method.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In