0

Full Content is available to subscribers

Subscribe/Learn More  >

Robust Control of Switched Linear Systems via Min of Quadratics

[+] Author Affiliations
Chengzhi Yuan, Fen Wu

North Carolina State University, Raleigh, NC

Paper No. DSCC2013-3715, pp. V001T01A002; 10 pages
doi:10.1115/DSCC2013-3715
From:
  • ASME 2013 Dynamic Systems and Control Conference
  • Volume 1: Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications; Bio-Medical and Bio-Mechanical Systems; Biomedical Robots and Rehab; Bipeds and Locomotion; Control Design Methods for Adv. Powertrain Systems and Components; Control of Adv. Combustion Engines, Building Energy Systems, Mechanical Systems; Control, Monitoring, and Energy Harvesting of Vibratory Systems
  • Palo Alto, California, USA, October 21–23, 2013
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5612-3
  • Copyright © 2013 by ASME

abstract

In this paper, we will investigate the robust switching control problem for switched linear systems by using a class of composite quadratic functions, the min (of quadratics) function, to improve performance and enhance control design flexibility. The robustness is reflected in two prospectives including the ℋ performance and arbitrary switching of subsystems. A hysteresis min-switching strategy is employed to orchestrate the switching among a collection of controllers. The synthesis conditions for both state feedback and output feedback control problems are derived in terms of a set of linear matrix inequalities (LMIs) with linear search over scalar variables. The proposed min function based approach unifies the existing single Lyapunov function based method and multiple Lyapunov function based method in a general framework, and the derived LMI conditions cover the existing LMI conditions as special cases. Numerical studies are included to demonstrate the advantages of the proposed control design approach.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In