0

Full Content is available to subscribers

Subscribe/Learn More  >

Application of Fuzzy Logic Control Strategy for Temperature Control in Friction Stir Welding

[+] Author Affiliations
R. R. Varun Das, V. Kalaichelvi, R. Karthikeyan

BITS Pilani Dubai Campus, Dubai, UAE

Paper No. GTINDIA2013-3790, pp. V001T08A006; 6 pages
doi:10.1115/GTINDIA2013-3790
From:
  • ASME 2013 Gas Turbine India Conference
  • ASME 2013 Gas Turbine India Conference
  • Bangalore, Karnataka, India, December 5–6, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-3516-1
  • Copyright © 2013 by ASME

abstract

Friction Stir welding is a solid state joining process that utilizes a rotating non-consumable tool to plastically deform and forge together parent metals. Welding can be controlled either by using Force, Temperature and Traverse or Seam Control methods. The presence of numerous parameters and conditional variations in FSW production environment can adversely affect weld quality making extensive automation processes impossible till date. The weld quality of FSW is closely related to the stability of the welding temperature. For such a non-linear complex process conventional control theory is not an appropriate choice. A fuzzy logic controller with a specially chosen triangular membership function has been suggested as an effective alternative approach. The aim of the present work includes dynamic modeling of a friction stir welding process and the use of a suitable Fuzzy tuned Control Strategy for temperature control. The Temperature at stir zone is measured using a K type Thermocouple. It has a sensitivity of 41μV/°C and also a wide variety of probes are available within its −200° C to +1250 °C range. The thermocouple is used by drilling a hole in the shank of the tool and letting it pass through it. The spindle speed is used as an appropriate variable to control temperature variations. The dynamic modeling and simulations were performed using Matlab whereas the variable values were derived during friction stir welding of aluminum.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In