0

Full Content is available to subscribers

Subscribe/Learn More  >

Life Prediction of Directionally Solidified Air Cooled HPT Gas Turbine Blade Used in a Supersonic Aircraft Using FEM

[+] Author Affiliations
S. Esakki Muthu, S. Dileep, S. Saji Kumar, D. K. Girish

Hindustan Aeronautics Ltd., Bangalore, KA, India

Paper No. GTINDIA2013-3572, pp. V001T05A005; 7 pages
doi:10.1115/GTINDIA2013-3572
From:
  • ASME 2013 Gas Turbine India Conference
  • ASME 2013 Gas Turbine India Conference
  • Bangalore, Karnataka, India, December 5–6, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5616-1
  • Copyright © 2013 by ASME

abstract

Life estimation of Directionally Solidified (DS) MARM-247 HPT gas turbine blade used in a turbofan engine of a supersonic aircraft is presented. These blades were drafted into the engine as a replacement for the polycrystal (NIMONIC) blades since a more efficient, reliable and durable material with high strength and temperature resistance was required to further enhance the life of the turbine blade and the efficiency of the power generation process. The supersonic aircraft is having a repeated mission cycle of a fast acceleration from idle, a 1hr cruise at Mach 1.5 and a fast deceleration to idle. The mission cycle which is a repetition of acceleration, cruise and deceleration cycles can produce wide variety of complex loading conditions which can result in HCF, LCF and creep damage of the turbine blade. Empirical equation of the universal slope developed by Manson was used to estimate the damage component due to LCF. The cumulative stresses and strains due to creep as a function of time was determined using Time hardening rule. Creep data for MARM-247 was correlated using LMP to predict the lives to 1% of creep strain at worst possible combination of temperature and stress value. Damage due to creep per mission cycle was determined using Life fraction Rule proposed by Robinson and Taira. The vibration characteristics of the turbine blade were predicted using Modal analysis. Campbell diagram was plotted to ascertain whether any nozzle passing frequency fall within the working range of the blade. Harmonic analysis was carried out to evaluate the magnitude of the alternating stresses resulting from the blade vibrations at resonance during the acceleration and deceleration cycle. HCF life of the turbine blade was assessed using Goodman diagram. The total damage of the turbine blade per mission cycle due to the above loading was assumed as the combination of the individual damage due to fatigue and creep. Time to failure under combined creep and fatigue damage was estimated using linear damage rule. Non linear features of FEA tool ANSYS12.0 was exploited to calculate the stress distribution, creep, plastic and the total strain encountered by the turbine blade as a function of mission cycle time. The loading spectrum associated with the mission cycle which includes the temperature, gas pressure and the speed profiles were obtained from a sophisticated engine ground test facility which was configured to simulate actual engine operating conditions. The proposed method of cyclic life estimation using FEM was validated by performing various component and engine level tests. A good agreement was observed between the calculated and observed blade lives.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In