Full Content is available to subscribers

Subscribe/Learn More  >

Cooling Efficiency Enhancement Using Impingement Cooling Technique for Turbine Blades

[+] Author Affiliations
Keerthivasan Rajamani, Madhu Ganesh

PSG College of Technology, Coimbatore, TN, India

Karthikeyan Paramanandam, Chandiran Jayamurugan, Sridharan R. Narayanan, Balamurugan Srinivasan

Honeywell Technology Solutions, Bangalore, KA, India

A. Chandra

Jain University, Bangalore, KA, India

Paper No. GTINDIA2013-3803, pp. V001T04A014; 15 pages
  • ASME 2013 Gas Turbine India Conference
  • ASME 2013 Gas Turbine India Conference
  • Bangalore, Karnataka, India, December 5–6, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-3516-1
  • Copyright © 2013 by ASME


The effect of impingement cooling on the internal surface (cooling passage) of the leading edge region in a commercial turbine high pressure first stage rotor blade is investigated using Computational Fluid Dynamics (CFD) simulations. The flow domain is obtained by stretching the middle cross section (50% span) of the above mentioned blade. The simulations are performed for 3 different profiles in the cooling flow passage. In all the cases, the nozzle position and Mach number of cooling fluid is kept constant at E/D = 4.32 and 0.4 respectively. In the first case, the suction side profile is modified to facilitate shift in the vortex. This may reduce the crossflow effect, which will enhance the Nuavg. However, simulation results showed that Nuavg is reduced by 2% when compared to base case. In the second case, the coolant flow passage is smoothened at the apex to reduce dead zone and to enhance spreading of the jet. In this case, a 3% increase in Nuavg is obtained. Based on the analysis of velocity contours in the second case, the coolant flow passage in the third case is further modified to improve the spreading of flow. This resulted in 5% increase in the Nuavg when compared to base case.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In