0

Full Content is available to subscribers

Subscribe/Learn More  >

A Comparative CFD Study on Flamelet Generated Manifold and Steady Laminar Flamelet Modeling for Turbulent Flames

[+] Author Affiliations
Pravin Nakod, Rakesh Yadav, Pravin Rajeshirke

ANSYS Inc., Pune, MH, India

Stefano Orsino

ANSYS Inc., Lebanon, NH

Paper No. GTINDIA2013-3700, pp. V001T03A012; 7 pages
doi:10.1115/GTINDIA2013-3700
From:
  • ASME 2013 Gas Turbine India Conference
  • ASME 2013 Gas Turbine India Conference
  • Bangalore, Karnataka, India, December 5–6, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5616-1
  • Copyright © 2013 by ASME

abstract

Laminar Flamelet Model (LFM) [1–2] represents the turbulent flame brush using statistical averaging of laminar flamelets whose structure is not affected by turbulence. The chemical non-equilibrium effects considered in this model are due to local turbulent straining only. In contrast, Flamelet Generated Manifold (FGM) [3] model considers that the scalar evolution, the realized trajectories on the thermo-chemical manifold in a turbulent flame is approximated by the scalar evolution similar to that in a laminar flame. This model does not involve any assumption on flame structure. Therefore, it can be successfully used to model ignition, slow chemistry and quenching effects far away from the equilibrium. In FGM, 1D premixed flamelets are solved in reaction-progress space rather than physical space. This helps better solution convergence for the flamelets over the entire mixture fraction range, especially with large kinetic mechanisms at the flammability limits [4].

In the present work, a systematic comparative study of FGM model with LFM for four different turbulent diffusion/premixed flames is presented. First flame considered in this work is methane-air flame with dilution air at the downstream. Second and third flame considered are jet flames in a coaxial flow of hot combustion products from a lean premixed flame called Cabra lifted H2 and CH4 flames [5–6] where the reacting flow associated with the central jet exhibits similar chemical kinetics, heat transfer and molecular transport as recirculation burners without the complex recirculating fluid mechanic. The fourth flame considered is Sandia flame D [7], a piloted methane-air jet flame. It is observed that the simulation results predicted by FGM model are more physical and accurate compared to LFM in all the flames presented in this work.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In