0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Liquid Jet Breakup in Cross Flow of Swirling Air Stream

[+] Author Affiliations
Tushar Sikroria, Abhijit Kushari

IIT Kanpur, Kanpur, UP, India

Saadat Syed, Jeffery A. Lovett

Pratt & Whitney Aircraft Engines, East Hartford, CT

Paper No. GTINDIA2013-3624, pp. V001T03A007; 10 pages
doi:10.1115/GTINDIA2013-3624
From:
  • ASME 2013 Gas Turbine India Conference
  • ASME 2013 Gas Turbine India Conference
  • Bangalore, Karnataka, India, December 5–6, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-3516-1
  • Copyright © 2013 by ASME

abstract

This paper presents the results of an experimental investigation of liquid jet breakup in a cross-flow of air under the influence of swirl (swirl numbers 0 and 0.2) at a fixed air flow Mach No. 0.12 (typical gas turbine conditions). The experiments have been conducted for various liquid to air momentum flux ratios (q) in the range of 1 to 25. High speed (@ 500 fps) images of the jet breakup process are captured and those images are processed using MATLAB to obtain the variation of breakup length and penetration height with momentum flux ratio. Using the high speed images, an attempt has been made to understand the physics of the jet breakup process by identification of breakup modes — bag breakup, column breakup, shear breakup and surface breakup. The results show unique breakup and penetration behavior which departs from the continuous correlations typically used. Furthermore, the images show a substantial spatial fluctuation of the emerging jet resulting in a wavy nature related to effects of instability waves. The results with 15° swirl show reduced breakup length and penetration related to the non-uniform distribution of velocity that offers enhanced fuel atomization in swirling fuel nozzles.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In