Full Content is available to subscribers

Subscribe/Learn More  >

Application of a High Order LES Approach to the Redistribution of Inlet Temperature Distortion in a Turbine

[+] Author Affiliations
Debasish Biswas, Aya Kitoh

Toshiba Research and Development Center, Kawasaki, Kanagawa, Japan

Paper No. GTINDIA2013-3545, pp. V001T02A003; 11 pages
  • ASME 2013 Gas Turbine India Conference
  • ASME 2013 Gas Turbine India Conference
  • Bangalore, Karnataka, India, December 5–6, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5616-1
  • Copyright © 2013 by ASME


The demand of an increase in the cycle performance of today’s gas turbines creates severe heat loads in the first turbine stage, since higher operating temperatures are required. The mean flow temperature is usually well above the limit supported by the surrounding material. Cooling of both end-walls and the blades of the first stage is thus usually necessary. Consequently, mid-span streaks of hot gas pass through the first stator row and become hot jets of fluid. Also, the exit flow from a gas turbine combustor entering a turbine stage can have a wide variation in temperature. These variations may be both spatial and temporal. The implementation of cooling method requires a clear understanding of the aerodynamics involved. Both qualitative and quantitative assessments of the redistribution of inlet temperature distortions can be used to considerable advantage by the turbine designer. Experimentally it has been demonstrated that the rotor actually separates the hotter and cooler streams of fluid so that a hotter fluid migrates toward the pressure surface and cooler fluid migrates towards the suction surface. The main purpose of this study is to test the performance of a high-order LES model in terms of predicting this type of highly complicated unsteady flow and heat transfer phenomena. This work describes the performance of a high-order Large Eddy Simulation (LES) turbulent model (developed by the first author) related to the prediction of above mentioned redistribution of inlet temperature distortion in an experimental turbine. Because the understanding of the physical phenomena associated with this temperature redistribution behavior is a very challenging computational fluid dynamic problem. If the numerical method could predict the precisely measured data satisfactorily, then the fluid dynamic variables which are difficult to measure (but obtained as computed results) could be used to visualize the flow characteristics. This technique will also help to get rid off indirect measurement techniques with large measurement uncertainty. In our study emphasis is put to predict the unsteady turbulence characteristics. In this work 3-D unsteady Navier-Stokes analysis of a turbine stage (satisfying the experimental stator-rotor blade ratio) is carried out to study the above mentioned phenomena. The numerical results predicted the experimentally observed phenomena very well. The fact that the streamlines in the stator row remain unaffected was demonstrated by the numerical results. The measured characteristics of the streamline patterns in the rotor row resulted from the secondary flow effect and consequently the inlet temperature distortion effect is also very well predicted.

Copyright © 2013 by ASME
Topics: Temperature , Turbines



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In