0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Evaluation of Small-Scale Cryosurgery Using Ultrafine Cryoprobe

[+] Author Affiliations
Junnosuke Okajima, Atsuki Komiya, Shigenao Maruyama

Tohoku University, Sendai, Japan

Paper No. MNHMT2013-22119, pp. V001T13A001; 6 pages
doi:10.1115/MNHMT2013-22119
From:
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer
  • Hong Kong, China, December 11–14, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-3615-4
  • Copyright © 2013 by ASME

abstract

Cryosurgery is one of the surgical treatments using a frozen phenomenon in biological tissue. In order to reduce the invasiveness of cryosurgery, the miniaturization of cryoprobe, which is a cooling device for cryosurgery, has been required. The authors have developed a ultrafine cryoprobe for realizing low-invasive cryosurgery by the local freezing. The objective of this study is to evaluate the small-scale cryosurgery using the ultrafine cryoprobe experimentally and numerically.

The ultrafine cryoprobe has a double-tube structure and consists of two stainless microtube. The outer diameter of ultrafine cryoprobe was 550 μm. The inner tube, which has 70 μm in inner diameter, depressurizes the high-pressure liquidized refrigerant. Depressurized refrigerant changes its state to two-phase and passes through the gap between outer and inner tube. The alternative Freon of HFC-23 was used as a refrigerant, which has the boiling point of −82°C at 0.1 MPa.

The cooling performance of this ultrafine cryoprobe was tested by the freezing experiment of the gelated water kept at 37°C. The gelated water at 37°C is a substitute of the biological tissue. As a result of the cooling in 1 minute, the surface temperature of the ultrafine cryoprobe was reached at −35°C and the radius of frozen region was 2 mm.

In order to evaluate the temperature distribution in the frozen region, the numerical simulation was conducted. The two-dimensional axisymmetric bioheat transfer equation with phase change was solved. By using the result from the numerical simulation, the temperature distribution in the frozen region and expected necrosis area is discussed.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In